Healthcare's $20B "super" problem

Multi-drug resistant organisms (MDROs), or superbugs, are a global issue quickly building into healthcare crisis. The Centers for Disease Control and Prevention (CDC) estimates that in the U.S. alone we face two million illnesses and 23,000 deaths annually, all attributable to antibiotic resistant infections. The cost for managing these hospital-acquired infections, that have so far been reported in nearly every state? More than $20 billion annually.


Yet, according to the CDC, it appears as if the superbug issue is only in its infancy. Without improved treatment programs in place, superbugs are projected to be a bigger killer than cancer by 2050, causing 10 million deaths annually. The CDC itself recently announced the U.S. government’s Antimicrobial Resistance (AMR) Challenge, a yearlong effort to accelerate the fight against antimicrobial resistance across the globe, showcasing the immediate concern for this looming healthcare issue. But much work still remains.

Where drugs fall short, biotechnology solutions prevail. Unfortunately, the pipeline for new antibiotic drugs that can combat MDROs is limited. With the lack of new therapeutics and the growing need to protect the efficacy of existing antibiotics, an important weapon in combating superbugs is rapid detection. Rapid molecular technologies for MDRO testing could help identify bacterial infections and guide appropriate patient management decisions earlier, improve infection control programs, and provide hospitals with faster and more targeted antibiotic response that improves patient outcomes and saves money.

In just hours, a combined rapid diagnostic and bioinformatic platform has potential to detect and identify multi-drug resistant pathogens, guide first-line antibiotic therapy more precisely, and locate antibiotic resistant threats throughout healthcare institutions and networks. With these integrated technologies, an antibiotic resistance database specific to institutions is now possible to help inform clinical actions by predicting resistance to specific antibiotics and determining if the antibiotic resistant pathogen is related to pathogens previously detected in the health system. For the first time, we have a rapid solution harnessing the power of genomics and bioinformatics to combat antibiotic resistance proactively and comprehensively. We can better protect patients and our supply of antibiotics from the growing Superbug problem.

One State Taking Action

We’ve already begun to see a proactive approach from one state, as Governor Cuomo of New York recently announced a groundbreaking initiative to detect, track, and manage antimicrobial-resistant infections at healthcare institutions statewide. This first-of-its-kind collaboration will produce a digital health and precision medicine platform that connects NY healthcare institutions to the NY Department of Health, and uses genomic microbiology for statewide surveillance and control of antimicrobial resistance.

The goal of the program is to improve patient outcomes while also saving healthcare dollars by integrating real-time epidemiologic surveillance with rapid delivery of resistant results to care-givers via web-based mobile platforms. Upon successful completion of a demonstration period a statewide rollout could follow, creating a blueprint for all other U.S. states to follow in the fight against antimicrobial resistant infections.

Evan Jones is the CEO of OpGen, Inc., a pioneering informatics and genomic analysis company providing complete solutions for patient, hospital, and network-wide infection prevention and treatment.



Copyright © 2022 Becker's Healthcare. All Rights Reserved. Privacy Policy. Cookie Policy. Linking and Reprinting Policy.


Featured Whitepapers

Featured Webinars