

Health Care Analytics Knowing when sophisticated data analysis is useful and when it isn't

Kurt J. Wrobel, FSA, MAAA

Geisinger Health Plan may refer collectively to Geisinger Health Plan, Geisinger Quality Options, Inc., and Geisinger Indemnity Insurance Company, unless otherwise noted.

Caring

"We need to make data driven decisions"

"We are not going to make decisions based on gut feel"

"Insights; Insights; I want Insights!"

BIG DATA

Building Blocks for good analytic decision making

Data: The starting point for any analysis

- Accurate Respondent do not have an incentive to be untruthful
- Sufficient data to ensure the representative sample reflects the entire population
- The historical data period can be a good predictor of the future

Potential for biased analysis or technical errors

Biases

- Confirmation bias
- The law of the instrument
- Under or overstating the probability of an extreme event
- Pro-innovation bias
- Information bias
- Automation bias
- Parkinson Law and the problem with trivia

Technical Errors

- Mistaking causation and correlation
- Insensitivity to sample size
- The Diderot Effect and Risk Management

Geisinger Health Plan

Looking out for Biased Analysis

- Financial incentives for a desired outcome
- Results that produce notoriety for the author
- Politically charged question
- Little historical data or data collected inconsistently
- Attempts to explain a complex system over an extended period of time

Managing Bias and Faulty Analysis

- Immediate feedback on results allow constant refinement of the model and mitigates potential biases
- Operational considerations
 - Create a team to manage individual biases
 - Look for "truth-seekers" rather than advocates
 - Manage the team's social environment
 - The bandwagon effect
 - Courtesy effect
 - Creating competing teams to answer a question

Geisinger Health Plan

After objective data analysis: Less than rational decision-making

- Lack of holistic decision making rely on expert data analysis that produce quantitative findings
- Overemphasis on quantitative findings to justify data infrastructure spend
- Hubris created by historical success of relying on a quantitative metric

Historical Events with poor analytic analysis and decision making

	Event	Data	Data Analysis	Decision Making Impact	
	2016 Presidential Election Polling	Poll respondents unwilling to reveal true candidate preference	Used historical poll of polls approach without considering qualitative factors in their estimate	Incorrectly estimated the probability of a Republican victory; Operational decisions within the campaign	
	Value at Risk during the 2008 financial crisis	Short time frame did not allow for adequate time to include extreme events	Technically sophisticated analysis based on economic theory	Relied on a simplifying metric to drive risk decisions	
	Robert MacNamara and the Vietnam War	Inflated casualty metrics ("kill ratio") and highly subjective data provided by the military	Relied too heavily on favorable quantitative analysis	Overly optimistic view of the war drove operational decisions	

When More Sophisticated Data Analysis is Useful

- Good data
 - Accurate data free from bias or collection error
 - A large number of observations
 - A stable underlying system the past is likely a good indictor of the future
- Limited Opportunity for biased findings
 - Immediate feedback on the model's accuracy
 - Analysis not connected to financial incentives; fame; or intensely held opinions
 - Well organized teams to properly question quantitative findings
- Decision making requires less consideration of qualitive factors
 - Clear operational decision
 - Correlation sufficient to make a decision (low cost if wrong)

The "Big Data" Analysis Approach

Based on simple system (buy/not buy) the history is a good indicator of the future

Geisinger Health Plan

- (its ok to be wrong)
- Holistic decision-making less ٠ important
- The success of this approach is measured relative to targeting with no data

Application to Health Care Analytics

The Data Analysis Continuum

Data analysis should drive the decision

Geisinger Health Plan Comparison point can highlight operational improvement opportunity Data is one factor of many when making a final decision Research finding should be approached with skeptism

14

Targeting Analysis (Fraud, Waste and Abuse; Medical Management)

Healthcare Utilization Benchmarks

• Provides comparative values for the Degree of Healthcare Management, 0% to 100%

- 0% Loosely Managed (LM)
- 100% Well Managed (WM)
- Moderately Managed (MM) any point between 0 100%

Benchmarks Example

FIGURE 1

	Annual Utilization/1000			Estimated Savings	
Top 10 DRG Codes	Actual	Benchmark	Variation	(,000)	
SKIN GRAFTS FOR INJURIES	0.37	0.05	640%		\$690
SPINAL FUSION CERVICAL W/O CC	1.38	0.67	106%		\$419
OTHER O.R. PROCEDURES FOR INJURIES W CC	0.98	0.36	172%		\$312
OTHER CARDIOTHORACIC PROCEDURES	1.21	0.33	267%		\$308
MAJOR SMALL & LARGE BOWEL PROCEDURES W CC	5.79	4.06	43%		\$268
MAJOR CARDIOVASCULAR PROCEDURES W CC	1.43	0.84	70%		\$220
STOMACH, ESOPHEGEAL, & DUODENAL PROCEDURES AGE>17 W CC	2.10	0.89	136%		\$209
SPINAL FUSION EXCEPT CERVICAL W CC	0.98	0.54	81%		\$208
CARDIAC VALVE & OTHER MAJOR CARDIOTHORACIC PROCEDURES W/O CARDIO CATHETER	0.96	0.59	63%		\$202
OTHER DIGESTIVE SYSTEM O.R. PROCEDURES W CC	1.20	0.39	208%		\$160

Estimated Total Savings

Benchmark Examples

Prospective Risk Taking

- Key Features
 - Financially meaningful
 - Annual decisions
 - Long Projection period
- Accurate Data; Objective data analysis (Actuarial Professionalism)

Prospective Risk Taking (Continued)

• Qualitive Factors Key

- Estimates of Provider Contracts and Utilization Management
- Consider long term business impact and membership Where do you want to be wrong?
- Portfolio Considerations
- Risk Management considerations critical
 - Need to balance complexity with simplicity
- Communication and Process are important as modeling
 - Senior Management needs to understand key assumptions and risks
- Rate Setting Case Studies
 - 2014 Rate Setting
 - Rating small populations

Return on Investment Studies

- The incentive problem
- Defining a control group

Academic Studies

- Wide range of potential data sources
- Potential for bias
 - A published article must show an interesting result
 - Notoriety for the author is important
 - Technical analysis can easily produce a wide range of results "regression fishing"
 - Peer review process
- Decision making
 - Limited skin in the game
 - Outcome of research may never be known

Geisinger Health Plan

Academic Study: Cross Country Comparison of Infant Mortality

- Case Study: Infant Mortality in industrialized countries
- Data
 - Cross country data collection reliant on different methods
 - Limited Data
- Objective analysis potentially impacted based on prior beliefs
- A definitive answer will not be known with any accuracy
- No immediate decision-making possible

Bringing it all together

- Remember the goal: Make better decisions not necessarily use data sets in a complex or interesting way
- Know your domain Is sophisticated data analysis useful and needed?
 - Data
 - Feedback and the ability to refine the model
 - Know when holistic decision-making is important
- Know the limits of the power of data and complex modeling
- Managing a team and process is as important as technical skill

