Life is interaction

Everything living interacts

When something alive stops interacting

It ceases to be alive
To the smallest

Micro-organism

Even life at the cellular level

Constantly interacts

Aerodynamic Leadership

Changing Your Leadership Shape
Your Ultrasound employees are not working as a team!

Uh-oh – what’s wrong?

They are reluctant to work holidays OR sign up for call!

Let me speak to them -

NO – I know what I’m going to do

Oh, OK – what’s that?

7 on 7 off. 10 hour days. If a holiday falls on your week - you work it! Problem solved!

So what do you think?

Well...honestly...Sounds like problem created not problem solved to me.

What? This new schedule eliminates our holiday issue!

Yes it does. But – it creates many other larger problems.

And those are?

Well our team leader, Brad, is a deacon in his church. He will not want to miss every other Sunday.

I'm listening -

You know that Melissa just received custody of her daughter after a long court fight. She has custody of her daughter every weekend.

OK

And Miri is, as you know, an orthodox Jew. She celebrates shabbat every Friday night beginning at sunset.

Any other “issues”?

Aren’t those enough?

Toby, the clinical schedule falls under my authority.
My staff will comply with the new schedule or work elsewhere. That's it.

This decision is going to cause a lot of turbulence! Our passengers are going to be VERY nervous!

This is a VERY non-aerodynamic decision!

The science of aerodynamics is the study of the resulting interaction between an object and air.

OBJECT = Leaders
AIR = Members of your organization

So leaders who are aerodynamic possess a leadership shape that minimizes disruptive interactions with their staff, and leaders who are not aerodynamically-shaped produce choppy, chaotic interactions with their staff.

Aerodynamic Objects

Faster
More Stable
More Efficient
Able to Travel Further

Aerodynamic Leadership
<table>
<thead>
<tr>
<th>Model</th>
<th>Range</th>
<th>Top Speed</th>
<th>Unit Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northrop Grumman B-2 Spirit</td>
<td>6,897 mi</td>
<td>628 mph</td>
<td>$737M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Cost</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013 Lotus E21 Formula One</td>
<td>about $9.4M</td>
<td>avg. 0-60 time of 1.9 seconds</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Powerplant</th>
<th>Horsepower/Speed</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wally 118 Motor Yacht</td>
<td>three gas turbine engines</td>
<td>17,000 at 65 knots</td>
<td>$33M</td>
</tr>
</tbody>
</table>
Oberto H1 Unlimited Hydroplane

Cost: Around $200K
HP/Top Speed: Around 3000/About 190mph on water
Engine: Lycoming T-55 L-7 turbine engine

Non-Aerodynamic Objects
ARE:
- Slower
- Unable to Travel Far
- Less Stable
- Less Efficient
- Unable to Travel Far

1982 Volvo Coupe

Increased wind resistance = Lower gas mileage
While the energy crisis raged in the early 1970's, President Richard Nixon requested the help of all federal agencies in coming up with energy solutions to ease the crisis. A NASA engineer who was working on the future space shuttle and was also an avid biker who had been frequently jostled about by passing semi-trucks, received President Nixon's blessing to take his team of NASA aerodynamics engineers to Edwards Air Force Base to design a better, more aerodynamic semi-truck. When his team completed their research, the results were passed along to semi-truck manufacturers. It is no accident that modern day semi-trucks look more like an aerodynamic space shuttle than a large shoe box moving inefficiently down the highway.
The Airflow BulletTruck

The BulletTruck has completely smooth contours – no hard edges. Panels along the underside reduce drag caused by the wind colliding with the tires.

In 2012 the BulletTruck made a cross-country trek from Connecticut to California. The BulletTruck, with a full load, achieved an amazing 13.4 mpg compared with 4-6 mpg with ordinary semi-trucks.

http://www.airflowtruck.com/Press_Releases.html

Aerodynamic objects have two characteristics that inefficient vehicles do not:

1. They have a minimal "cross-section"
2. They have a "thin" leading edge

Streamline Flow vs. Turbulent Flow

Laminar (Streamline) Flow is characterized by the movement of air or fluid around an object in nearly straight lines.

Turbulent Flow is characterized by the movement of air or fluid around an object resulting in choppy or chaotic flow.
Aerodynamic Objects have “minimal” cross-sections and “thin” leading edges.

Non-Aerodynamic objects have thick cross-sections and wide, obstructive leading edges.

Aerodynamic vs. Non-Aerodynamic

What is your leadership Shape?
Aerodynamic Leaders ARE:

- Faster
- More Efficient
- More Stable

Aerodynamic Leaders Possess:

- Minimal Cross-Sections
- Thin Leading Edges
- Professional Characteristics That Create Streamline Flow

Aerodynamic Leaders ARE:

- Faster — *Aerodynamic Leaders accomplish tasks quicker.* Employees want routine problems attended to by their leaders. Employees want movement on their problems, and fast answers to their unresolved questions.
- More Efficient — *Aerodynamic Leaders work smarter.* Working hard is rarely a prerequisite for success. Aerodynamic Leaders position themselves to function from their strengths.
- More Stable — *Aerodynamic Leaders understand the immense value of consistency.* Above all other leadership traits, consistency is the key to leadership success. Employees cannot know what great leaders will deliver.
Aerodynamic Leaders Possess:

Minimal Cross Sections — Aerodynamic Leaders promote LIFT.
Aerodynamic leaders, by design, promote LIFT. Subsequently, Aerodynamic leaders, by design, seek to elevate those on the journey with them.

Thin Leading Edges — Aerodynamic Leaders do not have to be the center of attention.
Thin profiles, like air across an aerodynamic shape, flow easily around them. Their presence, while firm, promotes easy interactions.

Professional Characteristics that promote streamline flow — Aerodynamic Leaders create smooth not chaotic flow.
Aerodynamic Leaders create smooth, not chaotic flow. Theirs is not an environment filled with conflict and tension but one filled with peace. Calm assurance is the norm when an Aerodynamic leader leads.

Laminar (Streamline) Flow is characterized by the movement of air or fluid around an object in nearly straight lines.

Turbulent Flow is characterized by the movement of air or fluid around an object resulting in choppy or chaotic flow.

Streamline Flow vs. Turbulent Flow

http://jyscience.wordpress.com/

We now know what Aerodynamic Leaders look like. How can we put these principles into practical use?

Conveniently, Aerodynamic Leaders are metaphorically similar to a wise and seasoned airline pilot.

Here are some Aerodynamic Leadership tips to assist you with your organization.
Aerodynamic Leadership Principle #1

Your passengers (members of your organization) cannot see what you see or hear what you hear.

Aerodynamic Leaders should remember that they are the only ones in their organization with a direct view ahead. Because of the position of your passengers they cannot see what is happening. Their vision is limited to the periphery while their primary view is obstructed. This is very important to remember – your people, who are your customers, depend on you to compensate for their lack of vision.

Additionally, your team members will not hear what you hear either. When the tower calls to re-direct your flight, your passengers are not privy to that conversation.

An aerodynamic leader will communicate just enough to bring understanding.

Aerodynamic Leadership Principle #2

Be Informative Early

My mentor taught me many things, but he was fond of saying, “Delivery is as important as content!” If your organization must climb to avoid a storm or divert to a different destination due to mechanical issues, it is best known earlier than later.

People are naturally controlling which means that they are especially sensitive when they have no control. Your people need to feel that their pilot is in control so that their personal lack of control is under control.

Communicating change with a good amount of lead time makes for a more rational and prepared group of passengers.

Aerodynamic Leadership Principle #3

Be Economical in Your Speech

One of two things happens when someone uses too many words, but does not arrive at a conclusion: the hearer tunes them out or watches and waits for the speaker to crash and burn. When a pilot cannot get to the point quickly it makes his passengers very nervous.

Pilots who explain themselves confidently are respected – pilots who explain themselves confidently and economically are aerodynamic!
Aerodynamic Leadership Principle #4

Know What Your Flight Attendants Know

Flight attendants are found among the passengers not locked away in the cockpit, therefore they see what the pilot cannot. Flight attendants can best describe the mood of the passengers, see potential problems brewing, and are ideally positioned to improve their passenger’s flight experience.

Aerodynamic Leaders know what their flight attendants know, and as a result they know what is going on in their aircraft.

Aerodynamic Leadership Principle #5

Avoid Actions That Hinder Your Aerodynamic Ability

An Aerodynamic Leader would never drop their flaps or landing gear while traveling 500 mph at an altitude of 50,000 feet. It would greatly disrupt the aerodynamic ability of the aircraft and imperil the passengers, but inappropriate words or behaviors by a leader effectively does the same thing.

Unfortunately, inappropriate actions of one in leadership almost always adversely affects the many that they lead.

Aerodynamic Leadership Principle #6

Every Aspect of Leadership is a Customer Service Event

Aerodynamic Leaders understand that their every decision, interaction, announcement, policy change, etc. is a customer service event. Their work is about benefitting their employees and the organization.

Aerodynamic Leaders avoid decisions that bring drag or resistance to their flight except when those elements are necessary.

All things being equal – aerodynamic things use less energy, are more efficient, and can move faster that things that are not.
So.....The real question you have to ask yourself is:

Which picture best exemplifies my leadership shape?

Or do my leadership decisions look like this?

Or this type of leadership vehicle?
SO.....The real question you have to ask yourself is:

Do my employee satisfaction scores reflect this kind of leadership vehicle?

Or this type of leadership vehicle?

Finally – What kind of leadership flow do I create?

Do my employees seamlessly pass over my leadership?

Or do they find choppy chaos in my leadership wake?

Whatever your current leadership shape, you now possess the knowledge to evaluate that shape and improve the aerodynamics of it!
Aerodynamic Leadership

Changing Your Leadership Shape

QUESTIONS?